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parameter uncertainty and specified tolerances on the n® system response to
command functions and the n2 response to disturbance functions. It is shown
how Schauder's fixed point theorem may be used to generate a variety of
synthesis techniques, for a large class of such plants. The design guarantees
the specifications are satisfied over the range of parameter uncertainty. An

attractive property is that design execution is that of successive single-

loop designs, with no interaction between them and no iteration necessary.
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Stability over the range of parameter uncertainty is automatically included.
By an additional use of Schauder's theorem, these same synthesis

techniques can be rigorously used for quantitative design in the same sense

as above, for nxn uncertain nonlinear plants, even nonlinear time-varying

plants, in response to a finite number of inputs.
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QUANTITATIVE SYNTHESIS OF UNCERTAIN MULTIPLE
INPUT-OUTPUT FEEDBACK SYSTEMS

1. INTRODUCTION

There is great interest in multiple input-output (mio) feedback systems,
for obvious reasons. A great deal of significant work (too numerous to list
but Wonham and Morse 1972, MacFarlane 1973, Wang and Davison 1973, Rosenbrock
1974, Porter and D'Azzo 1978 are representative and include bibliographies) has
been done, primarily in the realization and properties of the closed-loop input-
output relations, under the constraint of a feedback structure around the known,
fixed mio "plant." There has been notable work done with uncertain inputs, but
again only with fixed, known plants. Of course, plant uncertainty is always
implicit, if only because of the usual approximations required to obtain a linear
time-invariant (2ti) model.

In any case, there does not exist as yet any "quantitative synthesis"
technique for the mio problem with significant plant uncertainty, even for the
linear time-invariant case. By "quantitative synthesis" is meant that there
are given quantitative bounds on the plant uncertainty, and quantitative
tolerances on the acceptable closed-loop system response. The objective is
to find compensation functions which guarantee that the performance tolerances
are satisfied over the range of the plant uncertainty. In "quantitative
design," one guarantees that the amount of feedback designed into the system
is such as to obtain the desired tolerances, over the given uncertainty range.
In other designs, the amount of feedback may be more or less than necessary--

it is a matter of chance. The practical experienced designer may find the




latter approach sufficient. However, a scientific theory of feedback should
certainly include quantitative design techniques.

In this paper it is shown how Schauder's fixed point theorem can be
used to generate a variety of precise quantitative mio synthesis techniques
suitable for various problem classes. An outstanding feature of each synthesis
procedure is that it consists of a succession of direct (no iterations
necessary) single-loop design steps. Furthermore, by a second use of
Schauder's theorem, the techniques are rigorously applicable to quantitative
synthesis of nonlinear uncertain mio feedback systems. This paper concentrates

on existence proofs but a 2 x 2 example is included.

1.1 Preliminary Statement of a Linear Time Invariant MIO Problem

In Fig. 1, P = [pij(s)] is a n x n matrix of the plant transfer functions

in the form of rational functions, each with an excess eij > 0 of poles over

zeros, and with a bounded number of poles. The pij(s) are functions of q
physical parameters, with m an ordered real q-tuple sample of their values.

M = {m} is the class of all possible parameter combinations. The elements of
the n x n 1ti compensation rational transfer function matrices F = [fij(s)]’

G = (gij(s)] are to be chosen practical (each w:th an excess of poles over
zero). They must ensure that in response to command inputs the closed-loop
transfer function matrix T = [tuv(s)] (of ¢ = Tr) in Fig. 1 where c, r are the

n x 1 matrices (vectors) of system outputs and inputs, respectively, satisfy

conditions of the form
] V ) Secﬁm P
0 < Auv(m) < Ituv(Jw)l < Buv(m), meM (1) xtim O
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If the tuv(s) have no poles or zeros in the right half-plane (are stable and
minimum-phase), then tuv(s) is completely determined by |tuv(jw)|, so (1)
suffices (Bode 1945). It has been shown (Horowitz 1976) that time-domain

tolerances of the form

k7
w(t) < ift(ﬂ < uy(t)

vwE 0, s ny any finite number, can be satisfied by means of tolerances
like (1) on |c(jw)|, where c(s) = J:(t). The writer finds it much more
convenient to develop the synthesis theory in the frequency domain, and the
above proves its sufficiency for time-domain synthesis.

This presentation concentrates on the command response problem, but the

same ideas can be used to handle the quantitative disturbance response problem

under plant uncertainty, as will be shown in Sec. 6. The constraints on the
plant and the specifications are introduced as needed, in order to clarify the

reasons for their need.

2. DERIVATION OF SYNTHESIS TECHNIQUE

In Fig. 1, there are available n2

i 2
Llij(s)] = PG, and n fij :
tij‘ But in the expansion of T = [tij(s)] = (I + L) 'LF, each tab(s,m)
(meM) is a function of all the zij(s,m) each uncertain, resulting in very

loop transfer functions in L =

in F for satisfying the tolerances (1) on the n2

complicated expressions for tab and making direct quantitative synthesis
seemingly impossible--at least so far unsuccessful. The objective here is
to convert each tab(s,m) design problem into an equivalent single-loop problem

with uncertainty. This is done for each tab’ by lumping all the other inter-




acting ti'

j variables into an 'equivalent disturbance', as follows.

In Fig. 1, ¢ = PG(Fr - c), so

-1

(P™' + 6)c = GFr. (2)

Hence, the following restriction on P
_(PY): A(s) 4 determinant P(s) # O,VmeM.
Let v # 0 and ri =0, i # v, so the resulting cj(s) f tjv(s)rv. Let
= Al '
The uth element of (2) is then
n &
ry(s) iZ] (Pyi * 9yi)tsy = g 9yifiv-

To simplify the presentation, we take g . = 0 for u # i (although in practice
ui

it may be useful not to do so). Then letting rv(s) = 1, the last equation can

be written as

| 5 TN, EE!
P uu uv P
_ uu uu A
tyw © g = Tuy ~ Tduvduy (4a)
1 ¢
uu .
= b
dyv i;u Puitiv | (4b)

This corresponds precisely to the single-loop problem of Fig. 2, with

P = l/Puu. 0f course, the tiv in duv of (4b) are not known but the bounds

uve

(1) on ltivl are knowg’generating a set Duv = (duv}. We define the extreme duv

= Sup
IduveI M igu lPui”Bivl’ e % (1 (5)




Suppose we can find guu(s) and fuv(s), such that in the notation of (4,5)
0 < fry, | # lrgyylld,yele TRy, Buv]’V ek ' (6)

Then the magnitude of the right side of (4a) e[Auv, Buv] for all meM and for

all possiple combinations of tiy (i # u) which satisfy (1). Suppose this is so

\/ u,v combinations, and the other Schauder conditions of Sec. 2.1 are

satisfied. Then Schauder's fixed point theorem can be used to prove that

these same n uu and n2 fiv are a solution to the synthesis problem (1).

2.1 Application of Schauder's Fixed Point Theorem

This theorem states that a continuous mapping of a convex, compact set of
a Banach space into itself, has a fixed point (Kantorovich and Akilov 1964).
We define the Banach space to be the n2 C[0,=] product space denoted here by
C(nz), with norm = ¥ individual sup norms. C[0,=] is the Banach space of real
continuous functions f(w), wel[0,») with ||f|| = sup |f(w)|. The convex compact

s

w
set in each of the n“ C[0,»] is taken as the acceptable set of |tuv(jw)| satis-

fying (1), denoted by {he(w)} = Huv' Additional constraints have to be assigned
to the he (w) in order that each Huv set is compact and convex in C[0,»]. These

constraints have been justified in detail in (Horowitz 1975) and are therefore

only summarized here. If each set is convex and compact in C[0,»], their nz

product set denoted by H(nz) is convex and compact in C(nz).

Constraints.on H = {(h(w)}

1.3 continuous functions Ay (@) B, (w) with properties of (1) as

bounds on h(w)
2. h'(w) is uniformly bounded: J K, D |n'(w)] <k, ¥ hyw




-

3. h(w)+0 as w in the form k/w®, e a fixed finite number 23 to allow

at least one excess of pole over zeros for the elements of F,G,P in Fig. 1.

These constraints guarantee (Horowitz 1975) that h(w) can be taken as the magni-
tude of a function G(S)s=jm which has no zeros or poles in the interior of

the right half-plane or on the jw axis. Arg E(jm) is obtained from h(w)

by anyone of a number of Bode integrals (Bode 1945).

An element of H(nz) consists of n2 positive functions on [0,»], hik(w)’

Using any appropriate Bode integral, find the associated phase function denoted

here by arg[hik(m)]. giving the minimum-phase stable function hik(s)’

%ik(jw) = hik(w) +j arg[hik(w)]. For future use, denote this sequence of
operations whereby h(w) is transformed into h(jw), as the "Bode transformation"

B(h(w)). Define ¢ on H(nz) by

0 = (o015 -eesbpy)t HnD) > H(n), u_(h . h

nn 1Mz o e

Iyufuv - ) PuiB(hiv(“))

= ifu (7)

g
P (1 + 24
uu Puu

using for P ., P any specific fixed meM. (Note the similarity of (7) to (4a,b)).

fﬁ Appendix 2, it is shown that Iyu’ f ., can be found such that ¢ maps

uv
H(nz) into itseif. It is also necessary to prove ¢ is continuous, as follows.

¢ is a_continuous mapping

® is continuous if each of its n2 components is continuous. The first step
in each mapping is B(hiv(“))= hiv(j“)‘ In (Horowitz 1975, Sec. III) it is proven

that the step hiv(m)+ arg hiv(“)éeiv(w) is continuous in the ¢[0,) norm. Hence,

P T PR



- A .
the mappings h.iv(w)"’ h1v(“’) Cosoiv(w)gﬁiv(w)’ hiv(w)" hiV(w) sin eiv(w)
é'Xiv(w) are continuous. The denominator of (7) is a constant on H(nz), and

so are g . fuv and the Pui in the numerator. Thus, the numerator has the form

Num. = lKa L JKb & ilz(c.i + jUi)(Zi(m) + JX,I((A)))’J = ﬁa

all other terms real and only theﬁzi, Xi mappings on H(nz). Infintesimal changes
iné{i. Xi clearly result in similar change in Num., so Num. is continuous on
H(nz) and so is each wuv of (7) and hence &. The conditions in Schauder's theorem

are satisfied, so ¢ has a fixed point.

; *
This means a a set of hij(“) denoted by hij(”)’ 3

~%
g.f =Y P _.h (ju)

uu uv .4 Tuiiv
b (w) = s (8)
uv g
P (1 + 559 l
uu W
A% 4 8 *
u,v =1, ..., n, where hiv(Jw) = B(hiv(”))'
We would now like to deduce from (8), that
P .h (j
% * * Iuufuy -i;u uifyy (30) ' (9 2)
B(huv(w)) = huv(Jw) = 90 ¢
P (1 +5)
uu Puu

~k -
For, if (9) is true, then by letting huv(jm) = tuv(Jm), we have recovered (4)
and the n2 ﬁ:v(jm) are a solution to the mio problem for that specific meM.
The solution is unique if every building block in the mio system has a unique

output for any given input, which is a very reasonable condition. This makes

R T T PR TS S v



it unnecessary to prove that there are no transitions from (8) to an
expression similar to (9) but with right half plane poles and/or zeros. Since
m is any elemenu of M, this is true for all meM (of course with a different
set of ﬁ:v for each m). ;

The step from (8) to (9) is a crucial one and must be justified with great
care. Given an analytic function ¢(s), there is an infinitude of ¢(s) such
that [¢(jw)| = |w(ju)], w e[0,=], e.g.

(Y - vys) (1 + =,5)
¥(s) = ¢(s) O+ r:s) (1 - 125)

But ¢(s) £ vw(s) even though [¢(jw)| = |v(jw)|. But suppose we know from other

sources that ¢](s) has no right half plane zeros or poles., then given

|¢](jw)| = M(w) a magnitude function which is Bode transformable, we can
conclude that ¢](jw) = B(M(w)) = ﬁ(jw). Hence, to justify (9) we must prove
that the expression inside the vertical bars in (8) has no right half-plane
zeros or poles. The pole part is easy, because 1 + guu/Puu is obviously
designed to have no right half-plane zeros; certainly Iuu® fuv won't be
assigned any such poles; ﬁiv(s) doesn't have any by definition, and Pui is not
allowed any such poles--see Sec. 3.1. To prove the zero part, note that from
(6) and Rouche's theorem, the number of zeros of the right side of (9) in the

right half-plane, equals such number of

g f

uu_uv
uuy
Pl * 5

uu




which is easily made zero in the single-loop synthesis steps (if Puu has no
right half-plane poles, a condition necessary for other reasons--see Sec. 3.1).
Thus, the expression inside the bars in (8) has no right half-plane poles or
zeros, justifying (9). This is a very valuable result. The problem of
stabilizing a highly uncertain n x n mio system is automatically disposed of in
the synthesis procedure, which is furthermore one of designing n single-loop
transmission functions. .

It is worth noting that even.if the above p;oof was not available, it
would not be disastrous for this synthesis theory. It would only be necessary
to guarantee that at one meM, the system is stable and minimum-phase. For
then, this would be so\/meM, because by the continuity of the poles (and zeros)
with respect to the parameters, the right side of (8) would have to be infinite
(zero) at some w, in order that for some meM the system should be unstable
(or have a right half-plane zero). However, the synthesis procedure by

definition precludes this. And it is a relatively easy matter to guarantee

the desired conditions at one meM.

3. CONSTRAINTS ON MIO PLANT

The above results hinge on our ability (a) to find - and fuv to satisfy
(G)Vw, all u,v pairs and all meg]{ (b) that each equivalent single-loop design
is stable and minimum-phase N} meMQ These lead to constraints on the mio plant,
obtained by applying single-loop design theory to achieve (a,b). Appendix 1
gives an existence theorem for single-loop design. The first part of the design
(see Appendix A3) gives bounds on the nominal loop transmission which is

/P of (4a), where Puuo s the 'nominal' associated with a nominal m eM.

gUU uuo
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These bounds must be satisfied in order that a specific system transfer

function t | satisfy (1). Here guu/P is used for n L (¥ = Vaoiosht)

uuo
functions. It is proven in A3, that a guu/puuo can be found which satisfies
the conditions for all n tuv functions.

For example, consider t at e = and suppose Au](w]) = ,9, Bul(wl) =
1.1 in (1). We could split this range [.9, 1.1] into say [.95, 1.05] for T,
and .05 for Tduldu] in (4), using dite of (5) for d,- The technique in A3
or better (Horowitz and Sidi 1972), is then used to find a bound on guu(jw]).
Here, we note a tough constraint. Sooner or later in w, Iguu(jw)l must become

very small with 1 + guu/Puu + 1 and then in (4a)

g f -d

tyy > _u_u_;u (10)
uu

and in (7), by * the numerator of its right side divided by Puu’ Now (4a, 5, 6)

in general require that

ltuvlmax % ZITduvduvel (1)
But Ituvlmax = B,, and at high frequencies
sup
M i;ulPui“Bivl
17 quvduve! B

To see what this leads to take, for example, n = 2 so that the above applied

tov=1,u= 1,2 gives

. >2|P12|821 2Py 184
LRI L TT I ™ B
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requiring

4[PyoPo |

> as @ > = (12
[P11P221 12)

Thus, a constraint on P is

(PZa): 3 wp s 3 for w > wp, IP”P22| > 4‘P]2P2][VmeM. (13)

It is known that as s + o,

so the above becomes

kaakl  Alkpoky |
S4'%e2 - Eptth
w w

If the uncertainties in the kij are independent and e o+ €y = €0 + €51

this becomes

k k > 4

1mink22min (14)

k1 2maxk21max

There is an important problem class for which the inequality is less

harsh. This is the "basically noninteracting" class, where one ideally desires

n

i ij

for i # j, in (1). Also, one doesn't care if tij(i # j) is nonminimum-phase.

0 for i # j, but because of uncertainty accepts Aij = G, {tyil =8

Condition (6) then applies only to u = v. The fuv (u # v) are set equal to

zero and (13) becomes

Jugs 34 PPyl > 21P Py | melly w > . (15)




12

It is desirable to ease inequality (13) in the aeneral case. Note that (6)
can be satisfied over any finite w range by making |1 + guu/Puul large enough.

Thus, as previously indicated, one can split the [A ,B 7 tolerance so that

uv’uv

Iruvl > |Tduv|lduve|)d'“€M’ e.g. assign Iruvl e [E- e, E+ €] with

E = (Auv * Buv)/Z, 2e < B Auv and the balance (Buv - Auv - 2¢)/2 is assigneq to
Tduvduv of (4a). But |1 + guu[Pqu must then be made large enough to satisfy

the resulting requirements, and it can for any finite w range. The trouble is
that g,y Must be allowed to + zero as w »~ =, leading to (13), etc., if we

insist on (6). We could ignore (6) at large w, say for w > wy> With wy as

large as desired but finite, letting |t | << |t |[d | for w > w,. Then
uv duv!''“uve H
for w > Wy (11) is replaced by the weaker
[tuvlmax 3 ITduvduvel (16)
and for n = 2, (13) is then replaced by {
(P2b): 3 Wy 3 for w > whA’ |P”P22| = |P]2P2]|,VmeM | (17a)

-An important question is whether (17a) is an inherent basic constraint in the

presence of uncertainty, no matter what design technique is used, or is due
only to this specific design technique. The methods suggested in (Rosenbrock
1974, Owens 1978) to achieve diagonal dominance, may be helpful in satisfying

(17a), but they would have to be extended to uncertain plants. Note that in.

M s e A il s Ui e L o

Rosenbrock 1974, Owens 1978), diagonal dominance is desired Y w ¢ [0,=),
whereas in (PZb) it is required only for w > w,.

For the analog of (17a) at n = 3, it is found that diagonal row dominance
of P'] for w > Wy is a sufficient condition. The necessary condition can be

written as




Lo s alan o 4 B b o o Sl s i L L aae et o
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E’ wys D forw > wy PPl > |PioPs| and
PP 33l > (IP1Pasl * [Py3Poa ) (IPooP 31 + [Py P 3, 1) (17b)
which can be written as,
[P11P22P 33l > 1P11PagPaal + [P P Pasl * [PyoPpsPy ]
+ |P13P22P3]| % |P]3P2]P32| for o > wy . (17¢)

The latter has the following intepretation. Array the matrix P'] in the usual
manner, but twice -one under the other as in Fig. 3a. Then the terms on the
right side of (17c) consist of the products of the entries crossed by the

dashed lines.

However, if Oy is so used, it is no longer possible to use Rouche's
theorem and thereby prove each tij is minimum-phase. But we can still design
so that the nominal tij are minimum-phase and we know from (6) that tij(jw) #0

for ws[O,wH]. Therefore, from the continuity of the zeros of tij with respect

to the parameters of the system, if tij has any right half-plane zeros, they

must enter the right half-plane as shown in Fig. 3b. It is unlikely that such

a zero which must migrate all the way up to ij, should move back into the

"significant control bandwith region A. The point is that if right half-plane

zeros are "far-off", they have little effect and the system is "dominantly"

minimum-phase.

R T S E———
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Rouche's theorem can still be used if we can guarantee that (6) is
satisfied for a semicircle consisting of the segment [-ij,ij] and the right
half-plane half-circumference of the circle of radius Wy s centered at the
origin. Then, there are definitely no right half-plane zeros of tij in this
half-circle, and the system is "dominantly" minimum-phase This is quite

practical in the design technique of (Horowitz and Sidi 1972), discussed in A3.

3.1 Modification of mapping &

Note that for the "dominantly minimum-phase" and the "basically noninter-
acting" cases, the application of Schauder's theorem in (2.1), Eqs. (7-9), etc.,
needs modification, because nonminimum-phase tuv(jw) cannot be uniquely
derived from ltuv(jw)l. Redefine h ¢ Huv of 2.1 to consist of an ordered
pair: h(w) as before and q(w), the imaginary part of ﬂuv(jm) with
h = Iauv(jw)l; h e H,, the same as before but q(w) e C [0,») with
0 < |q(w)| < h(w). Constraints 2,3 in 2.1 on h(w) also apply to q(w). Let
(HQ),,, € c? [0,») denote the set {(h(w), q(w))} with ||(h.a)|| = |Inl] + llall-
Obviously, (HQ)uv is compact and convex in C2 [0,). The extension to the
n2 product set is straightforward.

The mappings ¥, in (7) are redefined. Each Yoy is a pair of mappings,
one the absolute value as before, the second the imaginary part with the
absolute bars on the right removed. On the right side of (7), B(hiv(“)) is
replaced by riv(”) + jqiv(“)’ with h?v = r%v + q%v, (hiv’ qiv) € (HQ)iv'

It is necessary to prove that ¢ maps each element of iHQ)uv into itself.

IR R ——— e o —
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The proof follows immediately from that for the minimum-phase case -- this

is obvious from (6), the definition of dyye N (5), and Appendices 1,2. The

e
proof that ¢ is continuous is straightforward. Accordingly, the Schauder
conditions are satisfied and there exists a fixed point which satisfies the
specifications. Such specifications, by themselves, would not be good ones
because they permit highly nonminimum-phase tuv(s). However, they are
satisfactory if it is known from other sources that tuv is "dominantly

minimum-phase".

3.2 Additional Constraints on P

Constraints A1(1)-(3) in the Appendix, must be applied to the llPuu,

1

since in Fig. (2) Bie 517 of Appendix. Al.1 requires that there be
uu
1

no change in the excess of poles over zeros of T Zé_ where A = det. P
uu uu

and Auu its uuth minor, as m ranges over M. Also, that for at least one
meM, denoted by Mio? Puu has all its poles and zeros in the interior of the
left half-plane. The M, €an be different for each u.

A1.2 requires that 1/Puu is minimum-phase\f meM, and its zeros do not
get arbitrarily close to the jw axis. Since 1/Puu = A/Auu, this means A must
have no right half-plane zeros. Hence the Pij in general have no right
half-plane poles. (For those who wish it, P is restricted to be controllable
and observable Vmsn, but these concepts are unnecessary if P is properly
formulated in terms of physical uncertain parameters (Horowitz and Shaked
1975)). Since the Pi; inP = [pij] are finite rational functions, the latter
part of A1.2 is automatically satisfied.
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A1.3 for n = 2 is the same as (17), which shows that (17) is a
fundamental conditioﬁ for linear time-invariant design, not an "extra"
condition due to our design technique, at least for n = 2. However, (13)
is an "extra" condition. Note, the extension of single-loop design to
disappearing poles and zeros in A6 may perhaps permit disappearing poles

and zeros in the mio plant functions.

4. OTHER DESIGN EQUATIONS

The previous design equations constitute only one of many
design techniques derivable from Schauder's fixed point theorem. Only
two more will be briefly mentioned here.

Both are based on the use of a nominal diagonal Toop trans-

mission matrix. The design obligations on the loop transmission

elements are then independent of the way the plant input and output
terminals are numbered. If G is made diagonal, such numbering is
important and after one arbitrarily numbers the plant input terminals,
he should try to number the outputs such that the main effect of in-
put i is on output i. Manipulation of (2) somewhat differently from

Sec. 2, gives

I v

Lo /8
. fnzn/én + i1 15T 1

t =
1T 1+ 2../8
1171 (18)
% Vauteis/Gans €LC.
tyy = 12007800 * 4o 2111 22
1+ 9‘22/622
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where V = [vij] = I—QKB)_], Po is the ‘nominal'plant matrix and there-
fore fixed, P is the general uncertain plant matrix, 6ii =1 - Viie
The gii are the nominal elements of the loop transmission matrix L.
Eqs. (18) lend themselves to single-loop design and use of Schauder's
theorem, pricely as did (4).

Another interesting set of design equations is obtained by de-
signing to control the changes in tij’ rather than tij directly. Let
T0 = [tijo] be the 'nominal' system transfer matrix and T = [tij] the

actual which is uncertain, AT =[Atij] =T - To' Then it can be shown

that

& = Gyt v, . IJP6P'] (19)

wheré.Po, P are likewise the 'nominal' and uncertain plant transfer

matrices, and L =-EOG = [iij] is the nominal loop transmission matrix.

If L is taken diagonal, the result is (n = 2 for simplicity)

Loun et Yot Yt

A4 T+ ¢

» At
11 1

and similar obvious ones for At2], Atzz.
The design problem is now completely one of disturbance

attenuation, with the disturbances d]] = v]]t]] + v]2t2]. etc., whose

range is known. Schauder's theorem is applicable in the same manner

as before. Note that V represents the 'normalized' plant variation

matrix. Eqs. (20) appear to be much simpler to use for design (once

P o e v o e o . e e——————

12 17 ¢ ol
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the Atij tolerances are formulated) than (4), and their use needs to
be intensively researched. However, both for (18) and (20) the con-
straints considered in 3., leading to (11-15) must be found, and
these may possibly be tougher than before. Also, both a nominal P
and T must be chosen}which is not gooquecause the optimum pairing

is not apriori known. However, the analogs of (14,17) may be more lenient.

4.1 Bandwidth Minimization

An important criterion for comparison of design techniques is
their "cost of feedback," which we take as the bandwidths of the
loop transmission functions--because they determine the system
sensitivity to sensor noise. Obviously, quantitative synthesis
techniques must first be invented before one can turn to their op-
timization (for without such guantitative techniques comparison is
possible at best, by analysis after a specific numerical design has
been made). This approach via Schauder's theorem promises to generate

a variety of such techniques, and the next step will be optimization.

5. DESIGN EXAMPLE

The 2 x 2 plant elements are pij = kij/(]+SAij) with correlated
uncertainties, giving a total of 9 parameter sets in Table 1. The
design was performed to handle the conwvex combination generated by

these 9 sets (Figure 6).
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TABLE 1
No Mmook Ry kA A, A, Ay
¥, 1 2 5 1 2 2 3
2. 1 2 1 P, 1 2
3. 1 2 & - g i
. 4 5 ! 2 ] 2 ¥
5. 4 5 1 2 5 1 1 2
6. 4 5 1 2 I G
7. 10 8 2 4 1 2 2 2
8. 10 8 2 4 Py e
9. 10 8 2 4 £ i e La oty

A "basically noninteracting" system is desired, with the off-diagonal

transmissions specified in the w-domain |t12(jw)|, |t21(jm)|<0.1 Yw. The

diagonal tl]’ t22 bounds are identical and were originally in the time-

domain in the form of tolerances on the unit step response shown in

Fig. 4a, b (which also shows the design results for those of the 9 cases

which were reasonably distinguishable). These time-domain bounds
were translated into the "equivalent" bounds on ltii(jw)l shown in
Fig. 5 (Horowitz and Sidi 1972, Krishnan and Cruickshank 1977).
Familiarity with quantitative single-Toop design is assumed
here . One can do a problem of this complexity by hand. The
sets {piie(jw)}’ called the plant templates, are obtained on the

S S G
Nichols chart. Some of these templates of P == P ==
N Py, 22 Pn
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are shown in Fig. 6 at various w values. The larger the template,
the greater uncertainty at that w value. The tolerances on tuu of
(4a) and Fig. 5 were divided between % and Tduuduu as discussed in !
Sec. 2. Each of these, in conjunction with the templates, leads to

g
Buu . Some of these
uuo

bounds on the nominal loop transmission luwo =

boulds on liio’ due to T]], are shown as solid lines in Fig. 7, i.e.,

it is necessary for 2110 to lie above the indicated boundary. The

tolerances on Tduuduu lead to the dashed line bounds on 21]0. No

attempt was made to optimize the division of the tolerances between
™ and Td]]d]1. The composite bound on ll]o must satisfy both.
The zllo(jw) chosen is also shown in Fig. 7. There was no attempt
made to optimize the ziio; the design was made by hand quickly, so

the ziio(jm) are larger than need be, with the tolerances therefore

satisfied better than necessary--as seen in Figs. 4a, b. Optimal

ziio(jm) would Tie on their boundariesat each w, so in this

example there is considerable overdesign.

Here we took

_ % 10 (1+.007s)
" P, W3 (1+.025s,)[1+§,_+ 2. ]

400 (400)2

L
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with
A
o _ .75 (1+3.66s) .
Prpe  (1#s)(143s)
A 2
SR Sanbet o il ’
ol R " R RN T T ,
« 150  (150)¢] )
with
A
o _ 1.5 (1+3.66s)
Pi]o (1+3s)(1+2s) !

The requirements on f]], f22 (f]2 = f21 = g12 = 921 = 0 here) were

found using single-loop design technique [15] as briefly explained ]

here in A4, and

i e
M1 v s f2°77 35

were found satisfactory. The system was simulated on the digital com-

puter with the results shown in Figs. 4a, b. The t tolerances ‘ ‘

12’ '
were easily satisfied by the design.
While this is not a very challenging example of the design techni-

que, nevertheless the uncertainty is very large and one should consider

how quick, simg]e and straightforward was the design procedure, and

also consider what alternatives are offered in the mio literature.

There are no other techniques available for systematic design to
specifications in the presence of significant uncertainty, which

guarantee design convergence and attainment of design tolerances.
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Whatever present popular technique is used, it would be necessary
to cut and try and endeavor to understand the relations between the
cutting and the results as one continued to cut and try, because
these techniques have no provision for significant uncertainty. In
the above design, one sweep was known to be sufficient because the
plant and the design tolerances (w-domain) satisfied constraints,

Pl etc.

5. EXTENSION TO NONLINEAR UNCERTAIN MIO PLANTS

Once there is a quantitative design technique for linear time
invariant mio uncertain plants, it appears at least conceptually
possible to extend it to a significant class of nonlinear, even
Aon1inear time-varying, uncertain mio plants. The procedure is a
generalization of that used (based also on Schauder's theorem'
in (Horowitz 1976) for single loop uncertain nonlinear systems.
The key feature is the replacement of the nonlinear plant matrix
set (a set because of the uncertainty), by a linear time invariant
plant set which is precisely equivalent to the original nonlinear

set, with respect to the acceptable system output set. The pro-

cedure is briefly presented for the case where one wants the system

with nonlinear uncertain plant to behave like a linear time-invariant

system for a specified class of command input sets.

————a—
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It is essential that the command input sets represent a good
sampling of how the system will actually be used. For example, suppose
n = 3 and in actual use rye 1 always exist simultaneously (with
ry= 0), and ry appears by itself (with AR 0). Say there are
ten typical r](t) inputs and for each typical r](t) there are five
typical rz(t). This makes a subtotal of 50 input sets, to which is
added the number of typical r3(t) say 10, giving a class R = {F} of
60 sets, of which 50 have the form r = (rl, ros 0) and ¥ = (0, O, r3)
for the balance. Choose F]CR. The family of acceptable outputs for
this input, is known from the tolerances on tij’ giving for that one
input vector a family #f = {h}, h = (hy hs h3). The mio plant is re-
presented by a family (because of parameter uncertainty) W of nonlinear
differential mappings
=1}, w-= (wl,wz,w3)3c] = w](xz,xz,x3,m), R
w3(x],x2,x3,m), where the x; are the plant inputs‘ci the plant outputs,
and m is the plant parameter vector meM.

Take a sample acceptable outputtriple h = (hys h h3) and find

2’
the corresponding plant inputs at some specific meM (or in other words,
pick a Welt) and let cj = hj and solve the nonlinear equations backwards,

giving the input set (x], s x3). Take the Laplace transforms X.(s)

2 i
of X, ﬁj(s) of hj giving the vectors X[s] = (il(s), iz(s), §3(s))

Als] = (ﬁ](s), g ﬁ3(s)). Repeat for other h samples in the

acceptable output set H, giving two paired families of X(s], ﬁj[s].
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Select any combination of three Q[s], forming a 3 x 3 matrix X and

A
corresponding paired combination of three h(s], forming the matrix H.

Set H = PX and solve for P = ﬁ(ﬁ)-]. P is the linear-time-invariant
equivalent of the specific Well picked, with respect to the specific
trio of acceptable output vectors picked. Repeat over different
trios. Repéat the entire operation over different wel!, giving a
class P] = {P} which is the linear-time-invariant equivalent of the
W family, with respect to the class of acceptable outputs H for in-
put vector F]. Repeat the entire operation for Fz, R ;60 giving

{T}} = Ptotal which is the linear time equivalent for the nonlinear
W, with respect to the tribe of 60 families of acceptable output sets.
The equivalence is exact if the conditions for application of
Schauder's theorem are satisfied. We now have a linear time-invariant
uncertain mio problem, which let us presume we can solve. If and only
if we can guarantee the solution of the latter, then the same compen-
sation functions will work for the original nonlinear uncertain mio
plant. Hence the importance of quantitative linear time invariant
design techniques (over and above their intrinsic .mgortance )--for they
enable the precise solution of nonlinear uncertainty problems.

The design effort in the above appears to be enormous but it is

conceptually straightforward and easy. An ordinary control engineer

can implement it and the digital computer is, of course, an essential

B
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tool. Conceptually too, it appears possible to extend the method to
obtain nonlinear relations between inputs and outputs within specified
bounds, despite large plant uncertainty, even nonlinear time-varying,
as can be done for the single input-output case. - The prospect
is fascinating. Imagine being able to work with the actual nonlinear
equations of a jet engine, or a chemical process, etc., include un-
certainties in the modelling, even uncertainty in system order (see
Appendix), and designing to achieve outputs within specified tolerances

over the given range of uncertainty.

6. DISTURBANCE ATTENUATION

Let x in Fig. 1 be a nx 1 matrix of distrubances. The resulting
- A 3
system output (with r = 0) is ¢ = (I +PG) 1 Px 2 Zx, Z = [Zig]’ the nxn

disturbance response matrix. Bounds on Z are given in the form

|2, (J)] < by (w) Y meM (21)

Rewrite ¢ = Zx in the form (P'] +G)c = x. Let X; # 0 only for i = v, so

o = 2n and
Cj = Zy Xy

SR
I Warault, "= suyl >
"

1

u
Pout Q2 * S © I (Pui*9yuilzyy
i#u
u
Sy - ! (Puii'gui)ziv
2w —ilt (22)
uv g
uu
Puu(] + -
uu
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Let

A Pui b gui
Xgvel@) = sup [ [=5—[b; () (23)

The gui(w) (i#u) can be chosen to minimize x . _(w), but for simplicity we shall

uve
assume them zero. From (22,23)

u

8 /P .+ x
Izuv(U))l < I A uu g l‘lve} (24)
@+
uu

If 1/Puu satisfies the constraints listed, then it is obviously possible
to guarantee lzuv(w)l < any finite number, no matter how small, at any finite
w. Also it can be made zero at a finite number of w values by assigning poles
to 9,0 at these values. Assume that g,y can be chosen to satisfy (21)

\/ w € [0,2). Then one can set up the conditions for Schauder's theorem,
precisely as was done in 2.1. The set buv(w) must have been formulated such
that B(nz), the n® product set of the buv(m), is compact convex in C(nZ)J
analogous to H(nz) in 2.1. The analog of ¢ in (7) must be formulated

with the modification of Sec. 3.1, inasmuch as we do not care if the zuv(s) are
nonminimum-phase.

Conditions analogous to (12-17) for n = 2, are obtained as follows.

As w > =, guu/Puu + 0 so in (24), the right side + its numerator. But
lzuv(jm)Ilg buv(w) of (21). Letu=1, v=2and thenu =2, v=1 and

obtain the necessary condition (for 92 = 997 = 0),

As w >, PioPyy < PyyPyy 5 ¥ med (25)

- - v e S ———




27

similar to (17) but here only at =, because there is no concern with the
minimum-phase property. Settingu =v =1, and then u = v = 2 in (24), we

get the conditions

P12P27 P12P21 |

= lp” = "Wl’ b22 > lpzz = e (26)

But in reality as w > =, ¢ >~ Px so Z » P and Z11 > Pyys Zpp > Pop- Hence,

assignment of b, (as w » «) to satisfy (25) is no obstacle, because the buv(m)

are upper bounds on the |zuv(jm)|.
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APPENDIX 1

EXISTENCE THEOREM FOR SINGLE-LOOP DESIGN

The plant transfer function p(s) is uncertain, belonging to a
set P = {p(s)} and is imbedded in a two-degree-of-freedom single-
loop feedback structure, as in Fig. 2 (p in place of puve)' The

rational functions f(s), g(s) (replacing fuv’ g in Fig. 2) are

uu

to be chosen to satisfy specified tolerances on the command fre-
quency-response t(jw) = f{%ﬁ%—and disturbance frequency response
td(Jw) = ¢(jw)/d(jw), (r, d, c replacing e 'duv’ c, in Fig. 2).

Al. Constraints on P

1. p(s) is a rational function with a fixed excess e>1 of
poles over zeros (this is relaxed later in A6, 7). 3 at least one
peP one of which is designated as Py all of whose poles and zeros
are in the interior of the left half-plane.

2. At each ue(0s0), 3 inf. [p(u)l 8 b(w)>0. 3 inf  b(u)

>

b;>0 for any finite interval I = [0,w]. Also, |P°| of Al(1) has

a sup on each finite interval 1 = [0,w], s?p ]pol = X1

: e - ¢
3. As s, p(s)+kﬁ& R kpe[k], kzl with o> k2>k]>0, uniformly
on P in the following sense: For any e€>0, no matter how small, 3 W
(independent of p(s)), such that for each peP there is associated a

kps[kl’ k2] so that

‘i?.ni E,———I <e and Arg Ip(jm)'*eﬂke, for 0 > Wy -
ko flos 2
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Note that A1(1) permits changes in plant order, e.g., %{2%13
1

with say a € [2, 5], Tlc [0, 31. A1(2) dictates minimum-phase p(s)
and that the jw axis is not a limit of any sequence of p(s) zeros.

A1(3) requires a uniform bound on the poles and zeros of all peP.

A2. Tolerances on |t(jw)] and |ty(jw)|

(1) 0<A(w) <]t(jw)]<B(w) with A, B € C [0, =), %%E% 2B(w)> 1.
2 inf B(w) = BI>1 on any finite I = [0,w].
I
Ak
B Blw) "2 N
(2) =2 x> 1.05, w, 3 for Wy 1) - This means that

1

in the high w range, the feedback is allowed to increase the sensitivity

s At (Jw)/t(juw)

, rather than decrease it. In fact, as noted by

Ip(jw)/p(iw)
Bode, Splnlsldw = 0 in any practical system, so the decrease
0

in S(|S|<1) achieved in the control bandwidth range, must be balanced
by |S|>1 in another range. A can be a large number, because as ww»,

M

t(jw)+0, e.g., suppose k2/k] = 10, who cares if |t(jw)| €[10
(A = 103) at very large w.

(3) The tolerances on td(jw) are in the form |td(jw)l$0(m)>0.
For any 1= [0, ul, 3 inf Q(w) = B, Since t, = P(1 + pg)™" =
pS  of A2(2), |Q/p|>1 at high frequencies, so 3 wd,'B for wuy,
Qw) = 8,(w)]p(ju], B,>1.05.




- -

(4) Both t(s) and td(s) must be stable. I.e., with poles re-
stricted to the interior of the left half-plane YpeP, and minimum-

phase.

A3. Choice of Compensation Functions

Let po(s) of A1(1) be the 'nominal' plant with kog[kl’ kzl its
associated kp value of A1(3).

Let € = .01 EQ in A1(3), w, = largest of {we’ W, » wd}, It = [o,wt],

A
k2
T= sup ’po(J“’)', of A1(2). In Fig. 2,
I b
t It
£ fQO
t(s) = ng; = b 20 =9 P, (A1)
9 4
p 0
sup | t(jw)] el
ol { Blw ¢ oo : :
We want nf 1260 S Alw) of A2(1). This is achieved in
P
sup|Po + %o
1F il < B of A2(1)
t 12f EE + 20 It
p
2 po . " . " l9’0“\'.‘.
Since 5 |< g 10 I, it suffices for It’ if |20|>ytand TE;TTT;; N It.
giving the sufficient condition
2 fiav, (Ff +1)
e e 8 12yl dn 1. (A2)

|
= ot
CAERD
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: a
To satisfy A2(3) in I, it i = i =
y A2(3) ¢» 1t is necessary that |tdl Tvap|
Po
Po <Q(w), which is certainly achieved if
p " ho
[£ |> suplp_ | sup|p | /1 11 A
) L al ks lB # ket
- = 0
Bar, [P i A

Therefore, choose

: a :
lzo(Jm)|> larger of (Izotl, |£0d!)—|£oxl, in 1.

Next, we find a bound on £ in Tt = [mt,w) to satisfy A2 in I

From A1(3), in Tt = [mt, w), flga} 1ies in the narrow sliver V in
ko
Fig. Al, < .01 P < .01 radians angular width, with magnitude bounds
2
k, ko’
.99-E— » 1.01 — | . Let A in Fig. Al be a trial value of 2 , so
2 5 2

P
7? + 20 is the vector originating at point }? in V and terminating

at A. Bounds on lo may be obtained so that

sup Eg
P

inf

satisfies A2(/2) and A2(3) in Tt= [w,> ).

It is easily seen that a very conservative boundary for 10 in

I, is the vertical line s = -0, with

t
K
ool ol oe .
LA T (M<2-|<1 )’0

i.e., %, on the right of the line s = -o, satisfies A2(1, 2) in it.

£

(A3)

(Ada)
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In addition A2(3) must be satisfied in I, i.e., Ityl =

t
p P./p
I] < ol =l G 1 B 1pls or ~—°L\< B. This is easily satis-
) 2+
P P 0
fied if the above
ko
o =0, = .99 W (B]-l) (A4b)
2
2 B]
Therefore, choose
o = smaller of (c], 02) (A4c)

Thus, the problem is to find zo(s) such that Ilo(jm)l is outside the

circle C in Fig. Al for wsw, and to the right of the line s =-o for

t
w > Wy - It is obviously very easy to find such an zo(s) which also
has all its poles and zeros in the interior of the left half-plane,
with any desired finite excess of poies over zeros, and which further-

more has the property shown in Fig. Al, i.e., lies on the right of

s=-g, for all w. For example, let

Zzox
Yo © g ot s )
(1+2)m(+S
£ e
Zloxwt_
e any desired finite number, wy = larger of (IOwt, a ¥s W4y = IOOmi.

Note that it would be impossible to guarantee the existence of the desired

%, if py was nonminimum-phase (Horowitz and Sidi 1978).
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It is conceivable that even though A2(1)-A2(3) are satisfied,

P
A2(4) is not satisfied. Consider the zeros of 1 + pg = 1 + lo — or

of (gL + 20). Recall that in [O, wt],{éh} lies in the circle oforadius
Yt which is inside the circle C of Fig. Al, while 20 lies outside the
larger circle C. In [wt, ®), 20 lies on the right of the line s=- ¢
while fg%& is contained in V of Fig. Al. Also, ﬂb(jw) lies on the
right of s = -0, Yw. Hence, the vector EQ—+ 20 does not encircle the

origin clockwise (or alternatively 20 does not so encircle ;g), Ypep,

and the system is stable.

Application to mio system

In the mio system (4a), the loop function luu = guu/Puu must handle
the n tuv problems v = 1,2,...,n. The bounds on luuo will be, in general,

different for each v with its own %ox of (A3) and 9, of (Adc).

v’ Itv

Let Iu = msx Itv’ lou = mex loxv’ &, = mln O be the design parameters

for zuu Obviously such a Euuo is satisfactory for all n Yov problems.

o
In Sec 3 (just before 3.1), there was noted the desirability of
satisfying (6) on the boundary of a semicircle of radius Wy in the right

half-plane. This requires, in addition to the previous, rewriting

Sec A3, replacing jw by mHeJe, 8e [0, w/2]. The development is easier if
ie
&,

ij =
kijls. on s = wy Clearly,
there will emerge bounds on guuo on s = wHeJe , which will have to be

Wy is large enough so that each pij

satisfied, in addition to those on s = jw. Obviously, such bounds can

always be satisfied by suitable shaping of guuo » SO that |2 is

o0

uuo|
large enough on Wy
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A4. Design of f(s)

There remains the design of f(s), inasmuch as 20(5) = g(s) po(s)

only determines g(s). Note that zo(s) only guarantees that

P

sup ' 0
P
P_ip ol _ B(w) g
inf Fﬁl i Aw) of A2{1);
P + 9
p (V)

f(s) is chosen so that |[t(jw)|e [A(w), B(w)]. For example, suppose

L s _ suplEg
A(m]) .9, B(w]) 1.04, and at o M 1P + 10

p
p 0

fe

1’ = 100, while inf
M

= 90 with fzo(jw])l = 80. The range of It(jwl)l =

is therefore [.8|f(jw])|, .889|f(jw])|], s0 we need

._0+2'
P (0]

.8|f(jm])|>.9, .889|f(jw])|<1.04, giving the permissible range of
Fi,-%ég%] for lf(jw])l. In this way, the bounds on [f(jw)| are
found and it is always possible to find an f(s) with left half-plane
poles and zeros which satisfies such bounds.

The above procedure in all its details, is not recommended as a
practical design procedure. Simplifications were made to make the
proof easier, but the loop bandwidth is much larger than necessary.
Its primary purpose is as an existence theorem. A practical optimum
design procedure based on these ideas, but without the rigor, has

been given in (Horowitz and Sidi 1972) and used a great deal with

considerable success.
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A5. Extensions
(1) It is possible to have A(w) = B(w), Q(w) = 0 in A2(1), (3)
at a finite number of w values, by choosing g infinite at these points.

The sensitivity zeros can be single or multiple.

(2) Some or all pePcan have zerox on the jw axis. If these zeros
are precisely known (unlikely), g(s) can be assigned poles there. Other-
wise, t(jw) must be zero at these points for such p, requiring obviously
much more careful statement of the tolerance on t(jw) and td(jw) near
such points.

(3) The most significant extension is that Constraint A1(1) can
be relaxed. There can be uncertainty in the order of the plant due to
disappearing poles and zeros--closely related to the problem of singu-

lar perturbations (Porter and Tsingas 1978).

A6. Disappearing Poles and Zeros

Let

m
p = pyll (1+sai)

TR P1W(S) (A5)
I (1+sbj)

with aielo, aix]’ bjs[O, bjx]and p]sF’satisfying Al. The question of
concern is: "For what m, n values can the loop transmission be arbi-
trarily large over an arbitrarily large bandwidth but still be practical,
i.e., go to zero as w » = with any desired finite excess of poles over
zeros?" For such m, n any tolerances satisfying A2 but otherwise ar-

bitrary, can be satisfied.
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In Fig. 2 and using (A5)

t(s) = fgp _ fgp1¥ e

1+gp 1+ 9p,¥ R (A6)

The question posed can be answered by referring to the logarithmic
complex plane (Nichols chart) in Fig. A2. The intersections of the

zero db line with the vertical Tines (2n+1) 180%, n = 0

1+

| e
is the point -1. Because of uncertainty, & = gp]W is not a point but
a set {2} denoted here as the template of %, :L(w) which occupies
some region in the complex plane--Fig. A2. The shape of :Lis

that of {p; ¥} because there is no uncertainty in g. The latter
permits the translation (but not rotation of %) in the complex
logarithmic plane, horizontally by arg g and vertically by |g| in

db. For some finite w range, large |%]| is needed so ;L lies above
the zero db line, e.g., ZIJuﬁ) in Fig. A3. At large enough w, ||

must be very small (-0 asws=) so :L must be well below the zero db

lines and continue downwards to - «. In the transition of zl'from
above to below the zero db line, it must not interest -1, nor en-
circle it. Hence, the width oféL must be restricted to <360°

for some w interval in which {Lcmn squeeze in between two -1 points
on its way downward (Fig. A2). But we want arbitrary sensitivity

reduction for arbitrary bandwidth. This requires 3 Wys 3 for

H

w > w, the width of Jéw) < 360°.
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Consider now the shape of ;Z which is that of‘7pW which is
that of:7p] +:7W in the Nichols chart. Constraint A1(3) assures
that at large enough w the width of ;kl + zero degrees, so it
is entirely a question of the width of :7; . Consider any factor

of ¥, e.qg., 7-11355 » be [0, ml. At any specific w, the maximum

width of the template is bar w = tan" wh  Forom s 20, the
template is OAB in Fig. A3 (0at b = 0, B at wb = 20); for wm = 100
it is OABU and for wm = 1000, it is OABUV. For two such independent
factors, it is easy to find the new template. This is done in Fig. A3
for Wy = em, = 20. Draw 0"A"B" = OAB and position 0" at points on

0AB (because of the independent uncertainties). The result is

ABEJDEFO =Z][(";wb )(1+jtb )1, bl’ b2 €[0, m]. The template of a
8 2

zero factor (l+jwa) is obtained by reflecting that of the pole if

(wa)pax = (wb) paxs 9iving OA'B' in Fig. 3.
As w increases, the contribution of each factor (pole or zero) - 90°
in width. Therefore, while theoretically four factors can be admitted
between two -1 points, stability margins dictate a maximum of three.
But this is only a necessary condition, because it must also be possible
to decrease |L| from arbitrary large to small values. This basically
means that over arbitrary large frequency range Arg L must be over-
whelmingly negative. The extreme right side of:Z must then lie on the
left of the 0° line in Fig. A2. One disappearing pole or zero poses no

problem, but two do because the left side ofzwill then intersect -1
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as :](1800 wide in the worst case) moves downward. (This argument must
be made rigorous, of course.) MNote that this is for the most demanding
situation. If only stability is desired, then any finite number of

disappearing poles or zeros can be handled.

APPENDIX 2

A7. CONDITIONS THAT & MAPS H(nz) INTO ITSELF

The constraints on Huv were given in 2.1. The first is satisfied
if (6) is. From Appendix 1, it is seen that at finite w, the only
possible difficulty is, if in Fig. 2, duv(jm) is unbounded but B e
is bounded. If such unboundedness of duv is at a finite number of w
values, it is possible to assign poles there to 9uu Since duv is a
function of the plant parameters (Eq. 4b), an infinite number of such

poles is conceivable, in fact is so in practice if there is one,

because of inevitable uncertainties. How can duv be unbounded while

Pive is bounded? From (3,5)
iu
I St Aiu t1'v
ifu _ A
= 5 ’ P = (A7)
uv = iu uve A
A= 7 (1 Piubiu * Puuluu i
i#u

Hence, such a situation is possible, if Aiu has such a pole which is
cancelled by a zero of Piu and is not present in puuAuu e.g. n=2,
P21 has a pole at #ja, P12 has a zero there and pnP22 does not have
a pole there. Such situations are therefore not allowed. It can be

argued that they are in practice impossible (Horowitz and Shaked 1975),
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because P12> P2 must involve different physical parameters and the
uncertainties in each cannot be 100% correlated. Irrespective of this

argument, the constraint is
|P;;(dw)| s uniformly bounded on [0,=) and A, Y iz (A8)

The problem is more difficult as w »~ = and is treated in Section 3.
To satisfy constraint (2) on Huv in 2.1, consider separately

T&v(w) and (Tduvduv)'(w) of (4). The former can be written

e PPN e B f(gp' + g'p)
™) = f +
(1+2) 1+% (]+gp)2
(A9)

2=0Ps P = Puer 979,

of Fig. 2. Since f2/(1+2) is bounded by the appropriate Buv’ the
first term on the right of (A9) needs only uniform boundedness of f',
which is easy as f is chosen by the designer. Obviously, the only
possible difficulties with the second term of (A9) are g', p*' which
can be infinite only at jw axis poles. However, at such poles, the
denominator forces the second term to be bounded. At large w where
gp, g', p' » 0, there is obviously no problem.

Next, consider (Tduvduv)'(w) written as

g =( dp \' _ d'p , d(p' - g'p?)
T+gp 1+gp (1 + gp)2 (A10)

g,p of (A9), d=d .
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From (A8), d and since d is a rational function d', are uniformly
bounded on the jw axis. From the prevfous discussion re p', g' etc. and
Appendix 1, y' can be uniformly bounded on any finite w range by proper
choice of g. At large w each of d, d', p, p' etc + 0.

It is easy to see that constraint (3) is satisfied, because it has

been required that the elements of P, G, F all - 0 as s + «,

4 S — - —

B T Ty
. sy ¥
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Fig. 1 Multiple input-output two matrix degree-of-freedom feedback
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Fig. 3b To reach A in right half-plane, a zero must cross juw axis
SRR above ij.
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